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Abstract

In this brief review we try to outline the basic structures underly-
ing integrable quantum field theory models with infinite-dimensional
symmetry groups which display quantum group symmetries. Certain
aspects are treated in some detail: integrable systems of Kadomtsev-
Petviashvili type and their reductions appearing in matrix models of
strings; Hamiltonian approach to Lie-Poisson symmetries; quantum
field theory approach to two-dimensional relativistic integrable mod-
els with dynamically broken conformal invariance. All field-theoretic
models in question are of relevance to diverse branches of physics
ranging from nonlinear hydrodynamics to string theory of fundamen-
tal particle interactions at ultra-high energies.

1 Introduction

A current view in theoretical physics is that fundamental laws of Nature
can be understood in terms of field-theoretic models in a lower dimensional
space-time possessing infinite-dimensional symmetry groups and, thus, as
a rule being integrable. These models are a part of the rich and rapidly
developing branch of string theory [1]. It is believed that string theory is the
most viable candidate for a unified theory of all fundamental interactions at
ultra-short distances which, in particular, will unify General Relativity and
Quantum Mechanics – one of the major challenges of this century’s Physics.

We have in mind two large classes of integrable models: conformal field
theory (CFT) [2, 3] and massive completely integrable models [4, 5, 6] in
D = 2 space-time dimensions. Typical examples of CFT are the ratio-
nal CFT’s, such as the extensively-studied Wess-Zumino-Novikov-Witten
(WZNW) models for various Lie groups G, and models obtained from them
by the gauging of different subgroups H of G [7]. In the class of massive inte-
grable models, the Sine-Gordon, (nonabelian) massive Thirring models, Toda
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models for various groups, and the Korteveg-de Vries (KdV)and Kadomtsev-
Petviashvili (KP) integrable soliton evolution equations and their hierarchies
have been thoroughly investigated. The integrability which is common to
both classes stems from the infinite-dimensional Lie-algebraic structure they
share: in the first class this being the Noether symmetry algebra, and in
the second, the Hamiltonian structure. The underlying infinite-dimensional
symmetries (which manifest themselves through the Virasoro (conformal)
[2] and affine Kac-Moody algebras [8] and their generalizations such as the
W -algebras [9]) play a crucial role in integrability.

The interrelation between CFT and completely integrable models be-
came clear recently through the appearance of KdV and KP integrable hi-
erarchies in the matrix model description [10] of (sub)critical strings (i.e.,
2-dimensional gravity interacting with conformal “matter” fields). Thus, it
is precisely the integrable field theories which provide the proper framework
for incorporation of the huge symmetries of string theory models.

The property of integrability is studied both in the classical and the quan-
tum cases. The principal problems which one should investigate are, for
the classical case: (a) Classification; (b) variables of the action-angle type;
and (c) exact integration of the equations of motion; in the quantum case:
(a) Classification; (b) exact scattering amplitudes, and (c) exact correlation
functions of local fields off the mass shell. The concepts and tools appropri-
ate to these are found in the theory of infinite-dimensional Lie algebras and
groups, and symplectic geometry , or equivalently, Hamiltonian mechanics.
The aim here is to uncover the common geometrical foundation of the field
theories. In the realm of string theory and the theory of completely inte-
grable systems, the intertwining of Hamiltonian and Lie-group structures in
field-theoretic models gives rise to new features, which are clearly seen in the
main methods for solving the quantization problem in integrable models: the
quantum inverse scattering method [11, 12], representation theory of infinite-
dimensional Lie algebras [8], and Quantum Groups (non-commutative and
non-cocommutative Hopf algebras) [13, 12].

The generic integrable models are massive field theories which can be
regarded as integrable perturbations of conformal field theories [14]. The
latter describe the renormalization group fixed points. Such models have the
advantage of being relativistically invariant and classifiable by the conformal
models of which they are perturbations. Their essential feature, which shows
explicitly the connection with conformal models, is the existence of multi-
Hamiltonian structures, i.e., the existence of at least a second Hamiltonian
structure which is compatible with the canonical R-matrix Kirillov-Kostant
structure [15]. The fundamental Poisson brackets corresponding to these
Hamiltonian structures (linear R-matrix brackets and quadratic (Sklyanin)
R-matrix brackets) arise naturally and are well understood within the clas-
sical inverse scattering method [5]. They can also be deduced in the semi-
classical limit from the basic algebraic structures:



String Theory and Integrable Systems 117

1. Yang-Baxter equation for the quantum version of the R-matrix;

2. fundamental commutation relations for the quantum transfer matrix,
involving the quantum R-matrix as “structure constants”,

of the quantum inverse scattering method [11] – the first systematic method
for quantization of completely integrable models.

In a related development, Drinfeld [16, 13] was the first to understand the
deeper algebraic and geometric nature of classical and quantum completely
integrable models. He showed that the algebraic structures 1) and 2) men-
tioned above were the basic structural relations of the non-commutative and
non-cocommutative Hopf algebras which were ultimately named Quantum
Groups. Furthermore, it was realized that a quantum group is a deforma-
tion of a classical Lie group much in the same way quantum mechanics is
a deformation of classical Hamiltonian (symplectic) mechanics [17]. In the
semiclassical limit the basic quantum group algebraic structures 1) and 2) go
over into a special Hamiltonian structure on the classical Lie group G, called
the Lie-Poisson structure, which is compatible with the group multiplication.
This is precisely the class of Hamiltonian structures given by the quadratic
fundamental R-matrix Poisson brackets mentioned above in the context of
classical completely integrable models.

The concept of quantum group symmetries in integrable quantum field
and statistical mechanics models has led to several developments: from gen-
eralization (i.e., q-deformation) of the internal and space-time symmetries
in quantum field theory and the connection between spin and statistics, to
quantum magnetic chains and the dynamics of critical phenomena [18]. Fur-
thermore, the concepts of integrability and perturbations around exactly
solvable theories have found their place in models of elementary particles
such as in quantum chromodynamics [19].

In what follows, some of the topics mentioned above will be discussed in
greater detail.

2 Matrix Models of Non-Perturbative

Strings and Integrability

2.1 Conventional Perturbative String Theory

The standard geometrical formulation of perturbative string theory [20] pro-
vides the following prescription for calculating physical observables (fermionic
degrees of freedom are discarded for simplicity): to construct scattering am-
plitudes one considers functional integrals over (Euclidean) string world-
sheets ΣA,G – smooth Riemann surfaces embedded in D-dimensional (Eu-
clidean) space-time RD of genus G and area A:
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Zstring =
∞∑

G=0

g2G
∫

dA e−ΛAZA,G(1)

ZA,G =
∫

[Dh]DX exp {−Sstring[X, h]}
n∏

i=1

∫
d2σi

√
hV (X, h; ki)(2)

Sstring =
1

2

∫
d2σ

[√
h

(
hab∂aX

µ∂bX
νGµν(X) + Φ(X)R(2)(h)

)

+ εab∂aX
µ∂bX

νBµν(X)
]

(3)

Here the following notations are used: g denotes the string coupling constant,
Λ is the cosmological constant, the string action Sstring represents a typical
D = 2 conformally invariant field theory describing D = 2 gravity given
by the world-sheet metric hab(σ) and coupled to world-sheet matter fields
Xµ(σ) describing the embedding of ΣA,G in RD. The functionals Gµν , Φ, Bµν

represent the space-time dilaton-gravity multiplet. String interactions are
given in (1),(2) by geometrical splitting and joining of individual string world-
sheets thus creating handles on the total world-sheet, whereas the asymptotic
incoming and outgoing string states are given by vertex operators V (X, h; k)
(k denoting the momentum of the asymptotic state).

Henceforth, for simplicity, the vertex operators V ’s in (2) will be sup-
pressed, i.e., we shall concentrate on the string partition function.

The most difficult part of calculating (2) is handling the functional mea-
sure [Dh] over the space of all gauge-inequivalent classes of metrics hab on
ΣA,G w.r.t. reparametrization and Weyl conformal invariance. In the confor-

mal gauge, hab = eφĥab(τ) where φ is the Weyl conformal factor and ĥab(τ)

is a reference metric with constant curvature R(2)
(
ĥab

)
and which depends

in general on the moduli {τ} of the Riemann surface ΣA,G, the standard
Faddeev-Popov gauge-fixing procedure yields [20, 21]:

[Dh] = δ
(
hab − eφĥab(τ)

)
∆ΦΠDφ

(
dτ

)
(4)

with the Faddeev-Popov determinant ∆ΦΠ giving rise to the well-known con-
formal anomaly.

An important result about the entropy of random surfaces with fixed area
A, first obtained by Zamolodchikov [22] in the semi-classical approximation
and subsequently strengthened in [23], states that for large A:

ZA,G'A→∞constGeΛcAA−χ(1−γ0/2)−1(5)

where Λc denotes a critical value of the cosmological constant Λ, χ = 2(1−G)
is the Euler characteristic of the surfaces, and γ0 denotes a critical exponent
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depending on the world-sheet matter fields. Relation (5) implies for the
string partition function (1):

Zstring ' (Λ− Λc)
2−γ0

∞∑

G=0

constG

(
g2

(Λ− Λc)
2−γ0

)G

(6)

which shows that one can obtain the complete nonperturbative result for
Zstring by taking the double scaling limit:

Λ −→ Λc , g2 −→ 0 such that g2
ren ≡

(
g2

(Λ− Λc)
2−γ0

)
= fixed(7)

2.2 Lattice Regularization of String Theory; Matrix
Model Formulation

It has been found [24] that statistical mechanical models of random matrices
(“matrix models” for short) provide an adequate apparatus for the nonper-
turbative description of lattice-regularized string theory based on the method
of random triangulation (and, more generally, random polygonization) of the
(Euclidean) string world-sheet. Furthermore, ways have been proposed in
refs. [10] for the correct implementation of the continuum limit as a double
scaling limit (7), which admits exact solutions in string theory.

Let us note that, whereas matrix model formulation of random surfaces is
adequate for solving integrable lattice models of planar statistical mechanics,
its application to genuine string theory is limited so far to the case of D ≤ 2
dimensional embedding space. Nonetheless, the exact solvability of matrix
models provides an important testing ground and qualitative hints for non-
pertubative string theory solutions in realistic cases (for extensive reviews,
see [26]).

Since our main aim is to clarify the emergence of integrability structures
in matrix models of string theory, we shall consider for illustrative purpose
the simplest one-matrix model with partition function given by:

Z =
∫

dN2

Me−NV (M) , V (M) =
∑

k≥0

tk

(
N

β

)k/2−1

Tr Mk(8)

with M = ‖Mij‖ being a N ×N hermitian matrix. In ordinary perturbation
theory defined in terms of a free propagator 〈MijMkl〉0 ∼ N−1δikδjl and k-leg

vertices with weights tkN
(

N
β

)k/2−1
, each diagram Γ gives a contribution of

the form:

∏

k≥3


tkN

(
N

β

)k/2−1



Vk(Γ)

N (L(Γ)−P (Γ)) = WΓ [{t}] Nχ(Γ)

(
β

N

)−L(Γ)

(9)
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On the l.h.s. of (9) Vk(Γ) , P (Γ) and L(Γ) denote the numbers of k-leg ver-
tices, propagators (links) and closed loops (faces) of Γ, whereas on the r.h.s.
χ(Γ) = L(Γ) − P (Γ) +

∑
k≥3 Vk(Γ) denotes the Euler characteristic of the

two-dimensional polygonized surface spanned by Γ, and WΓ [{t}] the product
of the vertex weights. Clearly, L(Γ) ≡ A(Γ) can be understood as the area
of Γ. Thus the partition function (8) can be written as:

Z = exp





∑

conn. surfaces Γ

Nχ(Γ)e−(ln β/N)A(Γ)+lnWΓ[{t}]


(10)

i.e., the free energy ln Z of the matrix model (10) represents the discretized
regularized partition function of random surfaces (more precisely, pure D = 2
gravity with action A(Γ) interacting with matter with action lnWΓ) upon
making the following identifications (comparing with (1)-(2), (5)): 1/N ' g
(bare string coupling constant), N/β ' e−(Λ−Λc) (Λ - the cosmological con-
stant) and the double scaling limit (7) takes the form of a special continuum
limit:

N

β
−→ 1 , N −→∞ , such that g2

ren ≡

β2

(
β

N
− 1

)2−γ0


−1

= fixed(11)

The explicit solution for the partition function (8) is obtained by the
method of orthogonal polynomials [25]. Diagonalizing the hermitian matrix
M = Udiag (λ1, . . . , λN) U−1 and integrating over angle variables in U , one

gets (rescaling M −→ (β/N)
1
2 M ):

Z =
∫ N∏

i=1

dλi ∆(λ) exp

{
−β

N∑

i=1

V (λi)

}
∆(λ)(12)

V (λi) =
∑

k≥0

tkλ
k
i , ∆(λ) =

∏

i<j

(λi − λj)

Introducing a complete set of orthogonal polynomials Pn(λ) = λn+ lower
order terms:

∫
dλPn(λ)e−βV (λ)Pm(λ) = hnδnm(13)

and re-expressing the Vandermonde determinant as ∆(λ) = det ‖Pi(λj)‖, the
integrals in (12) factorize, and give, using (13):

Z [{t}] =
N∏

n=0

hn ({t})(14)

where the dependence on the parameters of the random matrix potential
is indicated. Explicit solutions for hn ({t}) can be found by solving the
flow equations w.r.t. tk which correspond to integrable lattice hierarchies, as
briefly discussed in the next subsection.
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2.3 Differential Integrable Hierarchies from Matrix Mod-
els

The appearance of integrable hierarchies in the continuum (double scaling)
limit (11) has been extensively discussed in the literature (see [26] and refs.
therein). It is very interesting, however, that the flow equations can be ob-
tained directly from discrete matrix models even before taking the continuum
limit [27, 28]. This reveals their close connection to topological field theories
[29].

The above result is obtained most easily by the method of orthogonal
polynomials (13). On the Hilbert space spanned by {Pn(λ)}n≥0, one intro-
duces two conjugate operators Q,P with matrix elements defined by:

hnQmn =
∫

dλPn(λ)e−βV (λ)λPm(λ)(15)

hnPmn =
∫

dλPn(λ)e−βV (λ) d

dλ
Pm(λ)(16)

From (15), (16) one easily gets the matrix model string equation (the second
one below):

P = β (V ′(Q))(−) −→
[
β (V ′(Q))(−) ,Q

]
= 1(17)

where the subscript (−) denotes the strictly lower-diagonal part of the cor-
responding matrix. The string equation yields recurrsion relations for the
matrix elements (15) of Q.

It is straightforward to deduce from (15) and (13) the following flow
equations:

∂Pn(λ)

∂tr
= Qr

(−) nmPm(λ) , QnmPm(λ) = λPn(λ)(18)

∂Q
∂tr

=
[
Qr

(−) , Q
]

(19)

Eq. (19) is the integrability condition for eqs. (18) and it is compatible
with the string equation (17). One can identify (19) with the Lax form of
the flow equations of the integrable Toda lattice hierarchy by inserting into
(19) the explicit form of the Q matrix elements:

Qn,n+1 = 1 , Qn,n ≡ Sn−1 , Qn+1,n =
hn+1

hn

≡ Rn ≡ eφn−φn−1(20)

the rest being zero owing to the recurrence relations for orthogonal polyno-
mials. Eqs. (19) are now Hamiltonian, and the lowest one (with r = 1) is
generated by the Toda lattice Hamiltonian:
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HToda =
1

2

∑
n

S2
n +

∑
n

(
eφn+1−φn − 1

)
, { Sn , φm } = δnm(21)

Following [28], it is possible to replace the discrete lattice integrable hi-
erarchy (19) by a differential hierarchy at each fixed lattice site n where the
continuum variable is x = t1. Indeed, from the first (r = 1) flow eqs. (18)
and (19) yielding

∂Pn+1

∂t1
= RnPn ,

∂Rn

∂t1
= Rn (Sn−1 − Sn) ,

∂Sn

∂t1
= Rn −Rn+1(22)

one obtains (up to gauge transformation Pn −→ ψn = exp {∫ dt′1 Sn−1}Pn =
h−1

n Pn , and similarly Qnm −→ Q̂nm = h−1
n Qnmhm):

λψn = Q̂nmψn = h−1
n (Pn+1 + Sn−1Pn +Rn−1Pn−1)

=
[
∂ +Rn (∂ − Sn)−1

]
ψn(23)

where ∂ ≡ ∂
∂t1

. Once again using (22), one can rewrite the discrete evolution
eqs. (18), (19) in a differential Lax form for a fixed lattice site n:

∂ψ

∂tr
= (Lr)+ ψ ,

∂L

∂tr
=

[
(Lr)+ , L

]
(24)

where r ≥ 2 , ψ ≡ ψn(t1) and the subscript + indicates taking the purely
differential part of the corresponding pseudo-differential Lax operator (cf.
last equality in (23)):

L = ∂ + A (∂ −B)−1 , A ≡ Rn(t1) , B ≡ Sn(t1)(25)

Eqs. (24), (25) are immediately recognized as the 2-boson reduction of
KP integrable hierarchy (see subsections 3.2 and 3.3).

Using generalization of the method of orthogonal polynomials, it is pos-
sible to derive flow equations for integrable hierarchies also in the general
case of multi-matrix models (describing random surfaces interacting with q
different types of “matter”) :

Z =
∫ q∏

i=1

dN2

Mi exp



−

q∑

i=1


Tr MiMi+1 +

∑

k≥0

ti,k Tr Mk
i






(26)

without passing to the continuum limit [28]. The appropriate generalization
of (25) now reads:

Lq = ∂ +
q∑

l=1

Al (∂ −Bl)
−1 (∂ −Bl+1)

−1 . . . (∂ −Bq)
−1(27)
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which is a 2q-boson reduction of KP integrable hierarchy (see subsections 3.2
and 3.3 for more details).

Finally, returning to the string partition function (14), one can show that
Z [{t}] = τN(t) – the Toda lattice τ -function [27] subject to the so called
Virasoro constraints:

LsZ [{t}] = 0 , s ≥ −1 ; [Lr , Ls ] = (r − s)Lr+s(28)

Ls≥0 =
∑

k≥0

ktk
∂

∂tk+s

+
s∑

k=0

∂

∂tk

∂

∂ts−k

Ls<0 =
∑

k≥0

ktk
∂

∂tk−s

−
|s|−1∑

k=0

∂

∂t−k

∂

∂ts+k

which are equivalent to the constraints on the pertinent integrable hierar-
chies imposed by the “string” equation (17). They are in fact Ward identi-
ties corresponding to the symmetry δsM = εsM

s+1 , s ≥ −1 of (9). Similar
relations hold for multi-matrix models. In this case the continuum (double
scaling) limit Z [{t}] can be identified with τ -functions of reduced KP hier-
archies subject to the so-called W -constraints (generalizations of (28) which
span W -algebras; cf. (51) below).

3 Integrable Systems in Classical Physics:

Geometric Formulation

This section is devoted to a brief review of some principal structures and
properties of integrable systems in classical mechanics and field theory. We
first recall the notion of integrability.

Complete integrability: Consider a Hamiltonian system with n degrees of
freedom possessing a standard Hamiltonian structure with Hamiltonian
H(p, q) and Poisson bracket {·, ·}. A Hamiltonian system is called completely
(or Liouville) integrable if it has n independent integrals of motion Ik, k =
1, . . . , n, which are in involution: {Ii, Ij} = 0. For such a system one can find
the action-angle canonical variables and write explicitly the general solution
to the equations of motion.

Lax formulation: For infinite-dimensional (field theory) integrable Hamilto-
nian systems, there exists a convenient Lax (or “zero-curvature”) formulation
[5]. In the Lax formulation, the phase space of the Hamiltonian system is
parametrized by elements L taking values in some Lie algebra G and the
dynamical equations of motion can be written in terms of a Lax pair L, P ,
the latter also taking values in G, as the Lax-type equation:
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dL

dt
= [L , P ](29)

The Lax formulation leads straightforwardly to the construction of the
involutive integrals of motion. Any Ad-invariant function I(L) on G is a con-
stant of motion. It can be shown that any completely integrable Hamiltonian
system admits a Lax representation (at least locally) [30].

A very wide class of integrable models can be constructed in the approach
developed by Adler, Kostant and Symes, and by Reyman and Semenov-Tyan-
Shansky (AKS-RS scheme) [31, 15] having roots in the group coadjoint orbit
method [32].

3.1 AKS-RS Scheme

Let G denote a Lie group and G be its Lie algebra. G acts on G by the
adjoint action: Ad(g) X = gXg−1, with g ∈ G and X ∈ G. Let G∗ be
the dual space of G relative to a non-degenerate bilinear form 〈·|·〉 on G∗ ×
G. The corresponding coadjoint action of G on G∗ is obtained from the
duality of 〈·|·〉: 〈Ad∗(g)U |X〉 = 〈U |Ad(g−1)X〉. The infinitesimal versions of
the adjoint and coadjoint transformations (for g = exp Y ) will be denoted
by ad(Y )X = [ Y , X ] and 〈ad∗(Y )U | X〉 = −〈U | [ Y , X ]〉 , respectively.
When G is endowed with an ad-invariant bilinear form (·, ·) (Killing form)
allowing to identify G∗ with G , one has ad∗(Y )U = [ Y , U ] .

There exists a natural Poisson structure on the space C∞ (G∗, IR) of
smooth, real-valued functions on G∗ called Kirillov-Kostant (KK) bracket,
given by:

{F , H}(U) = −
〈
U

∣∣∣∣
[
∇F (U) , ∇H(U)

]〉
(30)

where F,H ∈ C∞ (G∗, IR) , the gradient ∇F : G∗ −→ G is defined by the
formula d

dt
F (U + tV ) |t=0 = 〈V |∇F (U)〉 and [· , ·] is the Lie commutator

on G. On each orbit of G in G∗ the Poisson bracket (30) gives rise to a
non-degenerate symplectic structure. For any Hamiltonian function H on
such an orbit one can write a Hamiltonian equation of motion dU/dt =
ad∗(∇H(U))U ( = [∇H(U) , U ] when G admits a Killing form).

In ref.[15] the R-operator (generalized R-matrix) was introduced as a
linear map from a Lie algebra G to itself such that the bracket:

[X, Y ]R ≡ 1

2
[RX, Y ] +

1

2
[X,RY ](31)

defines a second Lie-bracket structure on G , or equivalently, defines a second
Lie algebra GR isomorphic to G as a vector space. The Jacobi identity for the
R-commutator (31) implies that the modified Yang-Baxter equation (YBE)
for the R-matrix should hold (for arbitrary X1,2,3 ∈ G ):
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∑

cyclic(1,2,3)

[
X1 ,

[
RX2 , RX3

]
−R

([
RX2 , X3

]
+

[
X2 , RX3

])]
= 0(32)

A sufficient condition for the fulfilment of (32) is:

[
RX , RY

]
−R

([
RX , Y

]
+

[
X , RY

])
= −α

[
X , Y

]
(33)

where α is an arbitrary constant. Eq. (33) is usually written in terms of the
“ordinary” r-matrix r ∈ G ⊗ G which is isomorphic to R ∈ G ⊗ G∗ via the
Killing form 1:

[
12
r ,

13
r

]
+

[
13
r ,

23
r

]
+

[
12
r ,

23
r

]
= ad− invariant(34)

12
r≡ rijT

i ⊗ T j ⊗ 1 ∈ U (G)⊗ U (G)⊗ U (G) , etc.

where U (G) is the universal enveloping algebra. Classification of all one-
parameter solutions to (34) for simple Lie algebras G is given in refs.[33].

A new KK-type Poisson bracket {·, ·}R, called R-bracket, can be intro-
duced on G∗R ' G∗ with the help of (31) by substituting the usual Lie com-
mutator [·, ·] for the R-Lie commutator [·, ·]R in (30):

{F , H}R(U) = −
〈
U

∣∣∣∣
[
∇F (U) , ∇H(U)

]
R

〉
(35)

A function H on G∗ is called Ad∗-invariant (Casimir) if H[Ad∗(g)U ] =
H[U ] . Infinitesimally ad∗(∇H(U))(U) = 0 for each U ∈ G∗. Then it can be
shown that [15]:

1. all ad∗-invariant functions are in involution with respect to both brack-
ets (30) and (35);

2. the Hamiltonian equation on G∗ ' G∗R takes the following generalized
Lax form:

dU

dt
=

1

2
ad∗

(
R (∇H(U))

)
U =

[ 1

2
R (∇H(U)) , U

]
(36)

where the second equality holds when G admits a Killing form. Eq.(36) can
be obtained from a variational principle with the following geometric action:

W [U ] = −
∫ 〈

U

∣∣∣∣YR(U)
〉
−

∫
dtH[U ](37)

dU = ad∗R (YR(U)) U −→ dYR =
1

2
[YR , YR]R(38)

1r = rijT
i ⊗ T j and 1

2RX = T irij

(
T j , X

)
, where

{
T i

}
denotes a basis in G .
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where the integrals in (37) are along a smooth curve in the phase space G∗;
H[U ] is a Casimir on G∗ ; YR is the Maurer-Cartan one-form on GR. The
dependence on U ∈ G∗ of YR is determined from the first eq.(38) with the
R-coadjoint action:

ad∗R(X)U =
1

2

(
ad∗(RX)U + R∗(ad∗(X)U)

)

=
1

2

[
RX , U

]
− 1

2
R

([
X , U

]
(39)

where the second equality in (39) holds when G admits a Killing form. Hence
the above AKS-RS technique leads to a construction of completely integrable
systems in which the complete set of integrals of motion in involution coin-
cides with the set of independent Casimir functions on G∗.

A realization of this scheme arises when the Lie algebra G decomposes
as a vector space into two subalgebras G+ and G−, i.e. G = G+ ⊕ G−. Let
P± be the corresponding projections on G±. Then R = P+ − P− satisfies
the modified YBE (32). In this case eqs.(31), (35), (36) and (39) take the
following form:

[
X , Y

]
R

=
[
X+ , Y+

]
−

[
X− , Y−

]
(40)

(
ad∗R(X)U

)
± = ∓

[
X∓ , U±

]
±{ 〈

U∓
∣∣∣∣X±

〉
,

〈
U∓

∣∣∣∣Y±
〉 }

= ±
〈
U∓

∣∣∣∣
[
X± , Y±

]〉
(41)

dU

dt
+

[(
δH

δU

)

+

, U

]
= 0

where the following notations have been used:

X± = P±X ∈ G± , U± = P ∗
∓U ∈ (G∓)∗ , [ X , U ]± = P ∗

∓
(
[ X , U ]

)
∈ (G∓)∗

(42)

3.2 Algebra of Pseudo-Differential Operators and In-
tegrable Hierarchies of Kadomtsev-Petviashvili
type

Here the AKS-RS construction will be illustrated for G = ΨDO - the al-
gebra of pseudo-differential operators on the circle. An arbitrary pseudo-
differential operator X(x,Dx) =

∑
k≥−∞Xk(x)Dk

x is conveniently repre-
sented by its symbol [34] which is a Laurent series in the variable ξ: X(ξ, x) =∑

k≥−∞Xk(x)ξk. The operator multiplication corresponds to the following
symbol multiplication:
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X(ξ, x) ◦ Y (ξ, x) =
∑

N≥0

1

N !

∂NX

∂ξN

∂NY

∂xN
(43)

determining a Lie algebra structure given by: [X, Y ] ≡ (X ◦ Y − Y ◦X).
An invariant, non-degenerate bilinear form can be introduced on ΨDO :

〈
L|X

〉
≡ TrA (LX) =

∫
dxResξ

(
L(ξ, x) ◦X(ξ, x)

)
(44)

which allows identification of the dual space ΨDO∗ with ΨDO .
There exist three natural decompositions of G = ΨDO into a linear sum of

two subalgebras G = G`
+⊕G`

− labelled by the index ` taking values ` = 0, 1, 2:

G`
+ =

{
X+ ≡ X≥` =

∞∑

i=`

Xi(x)Di

}
,(45)

G`
− =



X− ≡ X<` =

∞∑

i=−`+1

X−i(x)D−i





Correspondingly the dual spaces to subalgebras G`
± are given by:

G`
+

∗
=



L− ≡ L<−` =

∞∑

i=`+1

D−i ◦ u−i(x)



 ,(46)

G`
−
∗

=



L+ ≡ L≥−` =

∞∑

i=−`

Di ◦ ui(x)





Note that in (46) the differential operators are to the left. Henceforth, we
shall skip the sign ◦ in symbol products for brevity.

After defining R` = P+−P− for each of the three cases, eqs.(40) take the
form:

[X,Y ]R`
= [X≥`, Y≥`]− [X<`, Y<`],(47)

ad∗R`
(X)L = [X≥`, L<−`]<−` − [X<`, L≥−`]≥−`

Choosing the infinite set of independent Casimir functions in the form:

Hm+1 =
1

m + 1

∫
dxRes Lm+1 , m = 0, 1, 2, . . .(48)

the three decompositions (46) of ΨDO labelled by ` = 0, 1, 2 yield, according
to the AKS-RS scheme, three different integrable hierarchies – the standard
KP hierarchy (` = 0) and the first and second modified KP hierarchies (` =
1, 2):
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∂L

∂tm
+

[
(Lm)≥` , L

]
= 0(49)

The three KP hierarchies are related through symplectic gauge transforma-
tions [35]. Here we shall concentrate on various Poisson reductions 2 of the
standard KP hierarchy which, in particular, appear in the context of matrix
models of strings.

The phase space of the standard KP integrable system is:

MKP =

{
L = D +

∞∑

k=1

uk(x)D−k

}
(50)

It is a trivial Poisson reduction from M = ΨDO∗ ' ΨDO). The KK Poisson
brackets (first eq.(41)) read on (50):

{un(x) , um(y)} = Ωn−1,m−1(u(x)) δ(x− y) ,(51)

Ωnm(u(x)) =
n∑

k=0

(−1)k

(
n

k

)
un+m−k+1(x)Dk

x −
m∑

k=0

(
m

k

)
Dk

xun+m−k+1(x)

and are recognized as the centerless W1+∞ algebra [9], which is isomorphic
to the algebra of differential operators on the circle DOP(S1) ⊂ ΨDO [37].

Let us go back to the flow eqs. in (multi)matrix models (24) with Lax
operator (27). One can show [38] that the space of 2q-boson Lax operators:

Mq =

{
Lq = D +

q∑

l=1

Al (D −Bl)
−1 (D −Bl+1)

−1 . . . (D −Bq)
−1

}
(52)

is a Poisson reduction of the full KP hierarchy given by (50). Therefore,
the flow eqs. (24) are Hamiltonian and completely integrable. In [38] the

Darboux canonical pairs of coordinates
(
ar(x), br(x)

)
, r = 1, .., q were found:

{ar(x), bs(y)}P ′ = −δrs∂xδ(x− y)(53)

Bl = bl + bl+1 + · · ·+ bq , Aq = aq(54)

Aq−r(a, b) =
q−1∑
nr=r

· · ·
n3−1∑

n2=2

n2−1∑

n1=1

(∂ + bnr + · · ·+ bnr−r+1) · · · (∂ + bn1) an1

By expressing the 2q-boson Lax operator (52) as a power series in D−1 it
could be rewritten in the form (50):

2The general notions could be found in [36]. Let (M, P ) be a smooth Poisson manifold
with Poisson structure P : T ∗(M) −→ T (M) and let S be a smooth submanifold of
M with an embedding µ : S −→ M . A Poisson structure P ′ : T ∗(S) −→ T (S) on
S ⊂ M is called Poisson reduction of P if for an arbitrary pair of functions on M the
following property is satisfied : µ∗ ({f1, f2}P ) = {µ∗f1, µ∗f2}P ′ .
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Lq = D +
∞∑

k=1

Uk[(a, b)](x)D−k(55)

Uk[(a, b)](x) = aqP
(1)
k−1 (bq)(56)

+
min(q−1,k−1)∑

r=1

Aq−r(a, b)P
(r+1)
k−1−r(bq, bq + bq−1, . . . ,

q∑

l=q−r

bl)

where Aq−r(a, b) are the same as in (54), and P (N)
n denote the multiple Faá

di Bruno polynomials:

P (N)
n (BN , . . . , B1) =

∑

m1+···+mN=n

(−∂ + B1)
m1 · · · (−∂ + BN)mN · 1(57)

Thus, the Poisson reduction described above leads to the construction of
a series of 2q-boson representations, q = 1, 2, .., of W1+∞ algebra in terms of
Poisson brackets for the functions (56), as follows from (51):

{
Uk[(a, b)](x) , Ul[(a, b)](y)

}
= Ωk−1,l−1(U [(a, b)])δ(x− y)(58)

Until now only the first Hamiltonian structure for integrable systems in
the AKS-RS scheme has been discussed. It is given by the KK bracket (35)
on G∗R.

Completely integrable systems possess another remarkable feature – that
of multi-Hamiltonian structure, i.e., they always possess at least two inde-
pendent compatible Poisson structures 3.

The second Hamiltonian structure for general Lax operators (50) has the
form4:

{ 〈L| X〉 , 〈L| Y 〉 } = TrA

(
(LX)+ LY − (XL)+ Y L

)

+
∫

dxRes
(
[ L , X ]

)
∂−1Res

(
[ L , Y ]

)
(59)

Here TrA denotes the Adler trace (44) and the subscript + indicates taking
the purely differential part. For the coefficient fields uk(x) of L (50) the sec-
ond KP Poisson algebra (59) yields the nonlinear (i.e., non-Lie) Ŵ∞ algebra
[42]. The latter appears as a unique (modulo certain homogeneity assump-
tions) nonlinear deformation of W1+∞ algebra. The Darboux variables for
(59) for the operators Lq (52) can also be constructed (see next subsection).
The second KP Hamiltonian structure can be understood as a Lie-Poisson
structure on the Lie-Poisson group of purely integral operators – the Volterra
group.

3Two Poisson structures {·, ·}1 and {·, ·}2 are called compatible if their linear combina-
tion {·, ·}λ = {·, ·}1 + λ{·, ·}2 is also a Poisson structure.

4The second term on the r.h.s. of (59) is a Dirac bracket term due to the second class
constraint u0 = 0 in L (50).
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3.3 Lie-Poisson Groups and Lie Bi-Algebras:
Hamiltonian approach

The notion of a Lie-Poisson group was introduced by Drinfeld [16]. A Lie
group G is called Lie-Poisson if there exists a Poisson structure on the alge-
bra of smooth functions on it Fun(G) which is compatible with the group

multiplication, i.e., ∆
({

F1 , F2

})
=

{
∆ (F1) , ∆ (F2)

}
, where ∆ denotes

the coproduct in Fun(G) ( ∆F (g, h) = F (gh)
)
. Poisson structure with this

property is called Lie-Poisson and is given by:

{
F1(g) , F2(g)

}
=

〈
∇LF1(g)⊗∇LF2(g)

∣∣∣∣r(g)
〉

(60)

= −
〈
∇RF1(g)⊗∇RF2(g)

∣∣∣∣r(g−1)
〉

〈
∇LF (g)

∣∣∣∣X
〉

=
d

dt

∣∣∣∣
t=0

F
(
etXg

)
,

〈
∇RF (g)

∣∣∣∣X
〉

=
d

dt

∣∣∣∣
t=0

F
(
getX

)
(61)

where ∇L,R denote left, right Lie-derivatives, and r(g) is a cocycle on G with
values in G ⊗ G:

r(gh) = r(g) + Ad(g)⊗ Ad(g) r(h)(62)

In the case when r(g) is a coboundary:

r(g) = Ad(g)⊗ Ad(g) r0 − r0(63)

with r0 ∈ G ⊗G being a constant element, one finds that the Jacobi identity
for (60) reduces precisely to the YBE (34) for r0 as a classical r-matrix.

For matrix groups eq.(60) can be written in a simpler form:

{g ⊗, g} = r(g) g ⊗ g
(
{g ⊗, g} = − [ r0 , g ⊗ g ] in the case of (63)

)
(64)

The cocycle condition (62) implies the following exterior derivative equa-
tion:

d r(g) = [Y (g)⊗ 1 + 1⊗ Y (g) , r(g)]− φ (Y (g)) ,(65)

φ(X) = − d

dt

∣∣∣∣
t=0

r
(
eXt

)
for ∀X ∈ G(66)

where Y (g) = dg g−1 denotes the Maurer-Cartan one-form on G , and φ
defined in (66) is a G ⊗ G-valued cocycle on G:

φ ([X , Y ]) = [X ⊗ 1 + 1⊗X , φ(Y )] + [φ(X) , Y ⊗ 1 + 1⊗ Y ](67)
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The solution of (65) is a coboundary r(g) (63) if and only if φ is a cobound-
ary:

φ(X) = [r0 , X ⊗ 1 + 1⊗X](68)

The cocycle φ allows to introduce a Lie-commutator [·, ·]∗ on the dual space
G∗ and, correspondingly, coadjoint action ad∗∗(·) of G∗ on G as follows:

〈[
U , V

]
∗

∣∣∣∣X
〉
≡ −

〈
V

∣∣∣∣ad∗∗(U)X
〉

=
〈
U ⊗ V

∣∣∣∣φ(X)
〉

, U, V ∈ G∗, X ∈ G
(69)
whereas the mixed commutator between elements of G and G∗ is defined as:

[ X , U ] = ad∗(X)U − ad∗∗(U)X(70)

An important theorem by Drinfeld [16] states that the Lie algebra G of
each Lie-Poisson group G is a Lie-bialgebra and vice versa. Thus, by means
of (69) and (70) the direct sum (as vector space) D = G ⊕ G∗ becomes itself
a Lie algebra called the double, such that G and G∗ are isotropic subalgebras
of D w.r.t. the Killing form on D:

(
(X1, U1) , (X2, U2)

)
= 〈U1| X2〉+ 〈U2| X1〉 ∀ (X1,2, U1,2) ∈ D(71)

The triple
(
D,G,G∗

)
is also called Manin triple. The double group D̃ '

G × G∗ , corresponding to D, is a direct product (as a manifold) of its
subgroups G and G∗ corresponding to G and G∗, respectively. The above
construction is symmetric under the replacements G ←→ G∗ , G ←→ G∗.

The explicit solution for the Lie-Poisson group cocycle r(g) (62) reads:

〈U ⊗ V | r(g)〉 =
〈(

g−1V g
)
−

∣∣∣∣
(
g−1Ug

)
+

〉
∀U, V ∈ G∗(72)

where the subscripts (±) indicate projections in the double algebra D along
G , G∗ , respectively.

As in the AKS-RS Lie-algebraic scheme, one can construct integrable
Hamiltonian systems on Lie-Poisson groups. Indeed, from (62) or (63) one
can easily verify that all Ad(·)-invariant functions on G , H[hgh−1] = H[g] ,
are in involution w.r.t. the Lie-Poisson structure (60): {Hk[g] , Hl[g] } = 0.
Similarly, the analogues of the Hamiltonian eqs. of motion (36) and the
associated geometric action (37) take the form:

∂g

∂tk
g−1 = −r̂g (∇LHk[g])(73)

W [g] = −1

2

∫
d−1

(〈
ŝg(Y (g))

∣∣∣∣Y (g)
〉)

−
∫

dtHk[g](74)
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where the action of the operator r̂g : G∗ −→ G is defined by 〈U | r̂g (V )〉 ≡
〈U ⊗ V | r(g)〉 , cf. (72), ŝg = r̂−1

g , and d−1 denotes inverse operator of the
exterior derivative defined on the closed forms 5.

An example of this construction, worked out in [39], is provided by the
extended Volterra algebra of purely pseudo-differential operators (c is an
arbitrary constant):

G ≡
(
Ψ̃DO

)
− =





∑

k≥1

uk(x)D−k + c ln D



(75)

Its dual is the extended algebra of differential operators (α an arbitrary
constant):

G∗ ≡ D̃OP ' W1+∞ =





∑

l≥0

Dlvl(x) + αÊ



 ,(76)

and the Lie-double is the extended algebra of all pseudo-differential operators:

D ≡ Ψ̃DO =
(
Ψ̃DO

)
− ⊕ D̃OP(77)

Here Ê indicates the central element of W1+∞ , as well as of the whole Ψ̃DO ,
which is dual to ln D , cf. [37, 39]. The corresponding extended Volterra
group (exponentiation of (75)):

G ≡
(
Ψ̃DO

)
− =



g ≡ L =


1 +

∑

k≥1

ũk(x)D−k


 ◦Dc



(78)

can be viewed as a set of spaces (for each fixed c) of Lax operators of gen-
eralized KP hierarchies. (The KP hierarchy (49) is recovered for c = 1).
In [39] it was shown that the second Hamiltonian structure (59) coincides
with the Lie-Poisson structure (64) with the cocycle r(g) (72) for the group

G =
(
Ψ̃DO

)
− (78).

Let us go back to the example of 2q-boson KP Lax operators appearing
in the multi-matrix string models (52). In analogy with eqs.(54)–(53) one
can express [41] the coefficient fields (Al, Bl)

q
l=1 of Lq (52) in terms of Dar-

boux canonical pairs of fields (cr, er)
q
r=1 w.r.t. the second KP Hamiltonian

structure (59):

{ck(x) , el(y)} = −δkl∂xδ(x− y) , k, l = 1, 2, . . . , q(79)

Bk = ek +
q∑

l=k

cl , 1 ≤ k ≤ q ; Aq =
q∑

r=1

(∂ + cr) er(80)

5Closeness follows from the exterior derivative equation: dŝg = ad∗
(
Y (g)

)
ŝg −

ŝgad
(
Y (g)

)− ŝgφ
(
Y (g)

)
ŝg , satisfied by the inverse cocycle operator ŝg as a consequence

of eq.(65).
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Ak =
k∑

nk=1


∂ + enk

− enk+q−k +
nk+q−k∑

lk=nk

clk


(81)

×
nk∑

nk−1=1


∂ + enk−1

− enk−1+q−1−k +
nk−1+q−1−k∑

lk−1=nk−1

clk−1


× · · ·

×
n3∑

n2=1

(∂ + en2 − en2+1 + cn2 + cn2+1)
n2∑

n1=1

(∂ + cn1) en1 , 1 ≤ k ≤ q − 1

These equations are equivalent to the following “dressing” form for the
2q-boson KP Lax operator (52):

Lq = Uq . . .U1 D V−1
1 . . .V−1

q(82)

Uk ≡ (D − ek) e
∫

ck , Vk ≡ e
∫

ck (D − ek) , k = 1, . . . , q(83)

Eqs.(79)–(81) or, equivalently, eqs.(82)–(83) can be viewed as generalized
Miura transformation for the 2q-boson KP hierarchy 6. The Miura form of
Lq (82) reads explicitly:

Lq = D +
∞∑

k=1

Uk[(c, e)](x)D−k(84)

Uk[(c, e)](x) = P
(1)
k−1 (eq + cq)

q∑

l=1

(∂ + cl) el +(85)

min(q−1,k−1)∑

r=1

Aq−r(c, e)P
(r+1)
k−1−r(eq + cq, eq−1 + cq−1 + cq, . . . , eq−r +

q∑

l=q−r

cl)

where Aq−r(c, e) are the same as in (81), and P (N)
n denote the (multiple)

Faá di Bruno polynomials (57).
Now, in complete analogy with eqs.(55)–(58), which yield a series of re-

alizations of the linear W1+∞ algebra in terms of 2q bosons, one obtains,
after substitution of (84)–(85) into (59), a series of explicit Poisson bracket
realizations of the nonlinear Ŵ∞ algebra in terms of 2q bosonic fields for any
q = 1, 2, . . . . This algebra plays an important rôle as a “hidden” symmetry
algebra in string-theory-inspired models with black hole solutions [42].

Concluding this section, let us note that in the general case Lie-Poisson
groups provide a natural geometric description of the dressing symmetries
in completely integrable models [43, 44]. The Lie-Poisson structures (64)
also appear in the context of the classical inverse scattering method [5] as
fundamental Sklyanin brackets for the monodromy matrix g ' T (λ) of the
auxiliary linear spectral problem.

6For discussion of the generalized Miura transformation and the associated
Kuperschmidt-Wilson theorem, we refer to [40].
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4 Quantum Integrable Models

4.1 Quantization of Lie-Poisson Groups: Quantum Groups

The quantization of completely integrable models with a Hamiltonian struc-
ture which is Lie-Poisson, lead historically to the first explicit construction
by the quantum scattering method [11], of quantum groups. These were
subsequently identified with quasi-triangular Hopf algebras [13].

Among the various ways to introduce quantum groups there exists an
approach [12], whose conceptual point of view underscores both the quantum
mechanical as well as the Hopf algebraic aspects in the quantization of Lie-
Poisson groups. On the one hand, Fun(G) can be viewed as an Abelian
associative algebra of “observables” of a classical Hamiltonian system (M,P)
with a phase space M = G and Poisson structure which is Lie-Poisson, i.e.,
P = PLP given by (60):

PLP (F1, F2) ≡ {F1 , F2 } = 〈∇LF1 ⊗∇LF2 −∇RF1 ⊗∇RF2| r0〉 ,(86)

where the classical r-matrix r0 satisfies the classical YBE (34). From now
on we shall consider only coboundary Lie-Poisson groups (63). On the other
hand, one can check that Fun(G) is endowed with a structure of a commu-
tative and non-cocommutative Hopf algebra A0(m, ∆, S, ε) ≡ Fun(G) with
a product m (F1, F2) (g) = F1(g)F2(g), coproduct ∆(F )(g1, g2) = F (g1g2),
antipode SF (g) = F (g−1) and counit ε(F ) = F (e), and this Hopf structure
is compatible with the Poisson structure (86), i.e., ∆ ◦ P = P ◦∆ .

Thus, the quantization of a Lie-Poisson group G may be viewed as a
generalization of Weyl quantization: Fun(G) −→ Funh(G) of a classical
Hamiltonian system defined by (M≡ G,PLP ) , i.e., it is a non-commutative
deformation of the product m −→ mh with a deformation parameter h, which
satisfies the additional condition that the deformed algebra Funh(G) ≡
Ah(mh, ∆, S, ε) is a non-commutative and non-cocommutative Hopf algebra.

Let us recall [17], that Weyl quantization for a Hamiltonian system de-
fined on a Poisson manifold (M,P) with local coordinates (xi) and con-
stant Poisson tensor { xi , xj } = P ij is given by the associative and non-
commutative Moyal product:

mh (F1, F2) ≡ F1 ?h F2 = m ◦ e
h
2
P (F1, F2)(87)

= F1 · F2 +
h

2
{F1 , F2 }+ O(h2)

P = P ij ∂

∂xi
⊗ ∂

∂xj
: Fun(M)⊗ Fun(M) −→ Fun(M)⊗ Fun(M)

Here P is the Poisson bi-vector field. Note, that the form of the first or-
der term in the h-expansion (last eq.(87)) is dictated by the semiclassical
correspondence principle.
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For Lie-Poisson groups (G,PLP ), the deformed product mh which defines
the deformed Hopf algebra structure and satisfies the semiclassical condition,
can be constructed as follows [12]. Let us choose a basis {X i} in U (G) –
the universal enveloping algebra of the Lie algebra G of G, and let πL,R

denote the representations of U (G) in terms of left, right Lie derivatives:
πL,R (X i) = ∇i

L,R (see eq.(61)). Then:

mh = m ◦ Λ̃ , Λ̃ = (πL ⊗ πL) (Λ) ◦ (πR ⊗ πR) (Λ−1)(88)

Λ(X,Y ) =
∑

{α},{β}
c{α},{β}(h)

dimG∏

i=1

(
X i

)αi
dimG∏

j=1

(
Y j

)βj

(89)

= 1 +
h

2
rijX

iY j + O(h2)

with the following notations. The coefficients in Λ : U (G) ⊗ U (G) −→
U (G) ⊗ U (G) [[h]] are power series in h ; {X i} and {Y j} are generator
basises in the first and second copy of U (G), respectively; ‖rij‖ = r0 is just
the classical r-matrix satisfying (34). The associativity condition for mh (88)
implies the following quadratic equation for Λ on U (G)⊗U (G)⊗U (G) [[h]]
( X,Y, Z below correspond to the first, second and third factor U (G) in the
tensor product):

Λ(X + Y, Z)Λ(X, Y ) = Λ(X,Y + Z)Λ(Y, Z)(90)

Λ(X, 0) = Λ(0, Y ) = 1

Defining R̄(X,Y ) = Λ−1(Y,X)Λ(X,Y ) ∈ U (G)⊗U (G) [[h]] , one obtains
from (90):

R̄(X, Y )R̄(X,Z)R̄(Y, Z) = R̄(Y, Z)R̄(X, Z)R̄(X, Y )(91)

R̄(X,Y )R̄(Y, X) = 1 ; R̄(X, Y ) = 1 + h rijX
iY j + O(h2)

R̄ is called universal quantum R-matrix associated with the classical r-matrix
r0. If ρ : G −→ End(V) is some representation of G in a finite-dimensional

vector space V , then the matrix R = (ρ ⊗ ρ)
(
R̄

)
∈ End(V ⊗ V) satisfies

the quantum Yang-Baxter equation (QYBE) and the “unitarity” condition,
(P ∈ End(V ⊗ V) being the permutation operator PX ⊗ Y = Y ⊗X):

12

R
13

R
23

R=
23

R
13

R
12

R ; RPRP = 1 ; R = 1 + h r0 + O(h2)(92)

The indices 12, 13, 23 indicate the various embeddings of R ∈ End(V ⊗ V)
in End(V ⊗ V ⊗ V) .

In particular, when G is a matrix group and the functions Fi are chosen
to be the matrix elements of g ∈ G, F1(g) = gab , F2(g) = gcd , one obtains
from the deformed product (88) and using matrix tensor notations:
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R
1
g

2
g=

2
g

1
g R ,

1
g= (g ⊗ 1) ,

2
g= (1⊗ g)(93)

The semiclassical limit of (93) is precisely given by the Lie-Poisson bracket
(64). Eq.(93) is nothing but the fundamental commutation relations for
the matrix elements of the quantum monodromy matrix (with suppressed
dependence on the spectral parameter) in the quantum inverse scattering
method [11].

Various treatments and numerous applications of QYBE could be found
in ref.[45]. For an incomplete list of parallel developments in abstract Hopf
algebra approach, the reader is referred to [46].

4.2 Soliton Scattering in Completely Integrable
Models

Let us consider a completely integrable D = 2 relativistic field theory defined
by the action S[φ] =

∫
d2xL(φ, ∂φ) which is assumed to be a local functional

of the fundamental fields (collectively denoted by φ ) and their derivatives.
It is useful to introduce the light-cone coordinates: x± = 1

2
(x1 ± x0) . Com-

plete integrability implies the existence of an infinite number of independent
integrals of motion in involution Q(s) , whose densities are local (as function-
als of φ and its derivatives) conserved currents:

Q(s) =
∮ (

T (s+1)dx− + Θ(s−1)dx+
)
, s = 1, 2, . . . ;(94)

∂+T (s+1) = ∂−Θ(s−1)

here s indicates the D = 2 Lorentz weight. Thus, if the property of complete
integrability survives after quantization, it should imply, in particular, that
the quantum renormalized Ward identities for the renormalized quantum
conserved currents

(
T̃ (s+1), Θ̃(s−1)

)
should be satisfied:

∂+

〈
T̃ (s+1)(x)φ(x1) . . . φ(xn)

〉
− ∂−

〈
Θ̃(s−1)(x)φ(x1) . . . φ(xn)

〉
(95)

= δ − function terms

Here 〈. . .〉 denote the time-ordered correlation functions. The infinite set of
Ward identities leads to severe restrictions on the particle (“soliton”) scat-
tering processes – conservation of all (odd) powers of momenta of incoming
and outgoing particles:

Nin∑

l=1

p2n+1
l(in) =

Nout∑

l=1

p2n+1
l(out)(96)

with Nin, Nout denoting the number of incoming, outgoing particles which,
in turn, implies [47]:
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1. no multi-particle production, i.e., Nin = Nout ;

2. factorization of multi-particle scattering amplitudes.

The last property leads to the remarkable Zamolodchikov’s factorization eqs.
for the 3-particle amplitudes [6], meaning that any 3-particle scattering pro-
cess is accomplished as a sequence of 2-particle scatterings only and, more-
over, the amplitude does not depend on the order in which these sequential
2-particle scatterings occur:

Sk1k2
i1i2 (θ12) Sj1k3

k1i3
(θ13) Sj2j3

k2k3
(θ23) = Sk2k3

i2i3 (θ23) Sk1j3
i1k3

(θ13) Sj1j2
k1k2

(θ12)(97)

with θab ≡ θa − θb , a, b = 1, 2, 3 . In (97) the following notations are
used: Skl

ij (θ12) denotes 2-particle scattering amplitude of incoming particles
of “type” labelled by i and j into outgoing particles of type k and l and (on-
mass-shell) momenta pa = ma (cosh θa, sinh θa) , a = 1, 2 ( θa is the relativistic
rapidity).

Now, denoting by V the vector space of internal particle symmetry (par-
ticle “types”), one can regard the matrix of the 2-particle amplitude as:

S (θ12) = ‖Skl
ij (θ12) ‖ ∈ Mat(V)⊗Mat(V) (forfixed θ12)(98)

12

S (θ12) ≡ S (θ12)⊗ 1 ∈ Mat(V)⊗Mat(V)⊗Mat(V)

and, accordingly, for
13

S (θ13) and
23

S (θ23) . Then it is straightforward to
identify (97) with the QYBE (92) in the quantum group framework.

A realization of the matrix quantum group relation (93) is provided by
the symmetries of the soliton scattering states [49]. Let Tij(θ) is an internal
symmetry operator acting on the 1-particle asymptotic space: |(θ, i)〉 −→
Tij(θ)|(θ, j)〉 ; |(θ, i)〉 ∈ V and ‖Tij(θ)‖ ∈ Mat(V).

As a result of the integrability the 2-particle S-matrix:

| (θ1, i1) , (θ2, i2)〉in = Sj1j2
i1i2 (θ12) | (θ2, j2) , (θ1, j1)〉out(99)

can be viewed (for fixed “rapidities”) as a mapping
12

S :
1

V ⊗ 2

V−→
2

V ⊗ 1

V .
Its invariance under the asymptotic states’s symmetry on the subspace of
2-particle asymptotic states gives (in the notation of eqn. (93)):

12

S (θ12)
1

T (θ1)
2

T (θ2) =
2

T (θ2)
1

T (θ1)
12

S (θ12)(100)

This is straightforwardly identified with the structural relations (93) for quan-
tum groups.

As pointed out in [50] quantum group relations of the form (97) and (100)
appear in exactly solvable lattice models of planar statistical mechanics, but
in this case – with purely imaginary “rapidities” ( θ = iα , α being angle
characterizing the rectangular lattice), Skl

ij (α) being the matrix of Boltzmann
weights at each lattice vertex, and Tij(α) denoting the row transfer matrix.
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4.3 Quantum Field Theory Approach to Integrable Mod-
els with
Dynamically Broken Conformal Invariance

Finally, let us briefly discuss the construction of higher local quantum con-
served currents satisfying the Ward identities (95), which is the heart of
the quantum field theory approach to quantization of completely integrable
models. Recently, Zamolodchikov [14] proposed a beautiful general formal-
ism based on treating integrable models as mass perturbations of conformal
field theories: S[φ] = Sconf [φ] +

∑
i mi

∫
d2xBi(φ, ∂φ) , where the coupling

constants mi have positive mass dimensions and Bi(φ, ∂φ) are composite
fields with conformal dimensions less than 2. Zamolodchikov’s approach is
purely algebraic since in general it is not possible to explicitly find expres-
sions for Sconf [φ] and Bi(φ, ∂φ) as local functionals of the local fundamental
fields {φ}. It uses exact results from the representation theory of the Vi-
rasoro algebra, in particular, information about the spectrum of conformal
field dimensions.

There exist, however, interesting classes of D = 2 integrable field theo-
ries, which are conformally invariant on the classical level but, upon quan-
tization, undergo dimensional transmutation, manifested through dynamical
mass generation. This leads to anomalous conformal symmetry breaking.
An example is the O(N) nonlinear sigma-model and its supersymmetric gen-
eralization defined by:

LNLσ =
1

2
∂+na∂−na, ~n2 = N/g, ~n =

(
n1, . . . nN

)
(101)

Lsysy
NLσ =

1

2
∂+na∂−na + iψ̄aγµ∂µψa − g

N

(
ψ̄aψa

)2
, naψa = 0(102)

The dimensional transmutation phenomenon clearly precludes the use
of conformal perturbation approach to (101), (102). However, there is an
alternative nonperturbative 7 treatment of quantum field theory models with
O(N) or SU(N) internal symmetry – the 1/N expansion [51].

Let us briefly illustrate the construction [52] of higher local quantum
conserved currents for (101) [53] within the 1/N expansion framework (the
same techniques applies to other 1/N -expandable integrable models as well).
The 1/N expansion is obtained from the generating functional of the time-
ordered correlation functions:

Z[J ] =
∫
D~n

∏
x

δ
(
~n2 −N/g

)
exp

{
i
∫

d2x
[
1

2
(∂~n)2 +

(
~J, ~n

)] }
(103)

7The term “nonperturbative” refers to expansions different from (or, e.g., partial re-
summations of) the ordinary perturbation theory w.r.t. the coupling constant g in (101)
and (102) which is plagued by infrared divergences in D = 2.
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=
∫
Dσ exp

{
−N

2
S1[σ] +

i

2

∫
d2x d2y

(
~J(x), (−∂2 + σ)−1 ~J(y)

) }

S1[σ] ≡ Tr ln(−∂2 + σ) +
i

g

∫
d2xσ(104)

by expanding the effective σ-field action (104) around its stationary point
σc ≡ m2 = µ2e−4π/g (dynamically generated mass of the “Goldstone” field
~n , µ being the renormalization scale), i.e., σ(x) = m2 + 1√

N
σ̃(x) . As a

result, one arrives at the 1/N diagram technique with (free) propagators in
momentum space:

〈
na nb

〉
(0)

= −i
(
m2 + p2

)−1
δab, 〈σ̃ σ̃〉(0) =

(
Σ

(
p2

))−1
(105)

Σ
(
p2

)
=

∫ d2k

(2π)2

1

(m2 + k2) (m2 + (p− k)2)

and tri-linear σ̃nn-vertices.
The 1/N expansion can be renormalized [54] by adapting the BPHZ 8

renormalization technique. A remarkable property of the 1/N expansion
is that the nonlinearity of the “Goldstone” field ~n(x) is preserved on the
quantum level as an identity on the correlation functions, in spite of the
manifest linear O(N) symmetry of (105):

〈
N

[
~n2P (~n, ∂~n)

]
(x) . . .

〉
= const

〈
N

[
P (~n, ∂~n)

]
(x) . . .

〉
(106)

where P (~n, ∂~n) is arbitrary local polynomial of the fundamental fields and
their derivatives, and N [. . .] indicates renormalized normal product of the
corresponding composite fields.

The first higher quantum conserved current (for s = 3 in the notations
of (94), (95)) takes the following form:

T̃ (4) = N
[(

∂2
−~n

)2
]

+ a1N
[(

(∂−~n)2
)2

]
(107)

Θ̃(2) =
(

1

2
+ a2

)
N

[
(∂−~n)2 σ

]
+ a3∂

2
−σ(108)

where all coefficients a1,2,3 = O(1/N) are expressed in terms of one-particle
irreducible correlation functions and their derivatives in momentum space at
zero external momenta. Their explicit form can be found order by order in
1/N from the renormalized 1/N -diagram technique described above [52].

Let us stress, that the higher quantum conserved currents (107) and those
for s = 5, 7, . . . do not have analogues in the classical conformally invariant
theory [56].

8Bogoliubov-Parasiuk-Hepp-Zimmermann [55]. As shown in [54], the (supersymmetric)
nonlinear sigma-models (101) and (102) are renormalizable within the 1/N expansion also
in D = 3 space-time dimensions in spite of their naive nonrenormalizability w.r.t. the
ordinary coupling constant perturbation theory.
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